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condition, the value of the index turns out to be a multiple of N , the size of the 2d

lattice. By interpolating the classical solutions, we construct explicit configurations, for

which the index is of order 1, but the action becomes of order N . Our results suggest that

the probability of obtaining a non-zero index vanishes in the continuum limit, unlike the

corresponding results in the commutative space.
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1. Introduction

Non-commutative (NC) geometry [1, 2] has been studied for quite a long time as a simple

modification of our notion of space-time at small distances possibly due to effects of quan-

tum gravity [3]. It has attracted much attention since it was shown to appear naturally

from matrix models [4, 5] and string theories [6]. In particular, field theory on NC geometry

has a peculiar property known as the UV/IR mixing [7], which may cause a drastic change

of the long-distance physics through quantum effects. This phenomenon has been first dis-

covered in perturbation theory, but it was shown to appear also in a fully nonperturbative

setup [8]. A typical example is the spontaneous breaking of the translational symmetry in

NC scalar field theory, which was first conjectured from a self-consistent one-loop analy-

sis [9] and confirmed later on by Monte Carlo simulation [10 – 12]. (See also [13, 14].)

The appearance of a new type of IR divergence due to the UV/IR mixing spoils the

perturbative renormalizability in general [15], and therefore, even the existence of a sensible

field theory on a NC geometry is a priori debatable. In order to study such a nonpertur-

bative issue, one has to define a regularized field theory on NC geometry, which is possible

by using matrix models. In the case of NC torus, for instance, the so-called twisted re-

duced model [16, 17] is interpreted as a lattice formulation of NC field theories [8], in which
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finite N matrices are mapped one-to-one onto fields on a periodic lattice. The existence

of a sensible continuum limit and hence the nonperturbative renormalizability have been

shown by Monte Carlo simulations in NC U(1) gauge theory in 2d [18] and 4d [19] as well

as in NC scalar field theory in 3d [12, 20].

In the case of fuzzy sphere [21], finite N matrices are mapped one-to-one onto functions

on the sphere with a specific cutoff on the angular momentum. The fuzzy sphere (or fuzzy

manifolds [22, 23] in general) preserves the continuous symmetry of the base manifold,

which makes it an interesting candidate for a novel regularization of commutative field

theories alternative to the lattice [24]. It is also interesting to use fuzzy spheres in the

coset space dimensional reduction [25]. Stability of fuzzy manifolds in matrix models with

the Chern-Simons term [26, 27] has been studied by Monte Carlo simulations [28, 29].

One of the interesting features of NC field theories is the appearance of a new type of

topological objects, which are referred to as NC solitons [30], NC monopoles, NC instantons,

and fluxons [31] in the literature. They are constructed by using a projection operator,

and the matrices describing such configurations are assumed to be infinite dimensional. In

finite NC geometries, namely in the case where field configurations are described by finite-

dimensional matrices and therefore regularized, topological objects have been constructed

by using the algebraic K-theory and projective modules [32 – 34].

Dynamical aspects of these topological objects are important in particular in the real-

ization of a 4d chiral gauge theory in the context of string theory compactification, which

requires a nontrivial index in the compactified dimensions (See, for instance, section 14

of ref. [35].) Ultimately we hope to realize such a scenario dynamically, for instance, in

the IIB matrix model [36], in which the dynamical generation of four-dimensional space-

time [37 – 39] as well as the gauge group [40, 41] has been studied intensively.

Extending the notion of the index to finite NC geometry is a nontrivial issue due to the

doubling problem of the naive Dirac action. The same problem occurs also in the ordinary

lattice gauge theory. There one can add the Wilson term to the Dirac action to remove

the species doublers in the continuum limit at the expense of the explicit breaking of chiral

symmetry. This had been a notorious problem in lattice gauge theory as manifested by

the no-go theorem [42]. It was found, however, that by adopting a Dirac operator which

satisfies the Ginsparg-Wilson relation [43], a modified chiral symmetry, which becomes the

usual one in the continuum limit, can be exactly preserved on the lattice [44, 45]. The

Dirac operator has exact zero modes with definite chirality for topologically nontrivial

gauge configurations, and therefore one can define the index unambiguously [46, 47, 44].

A concrete example of such an operator with desirable properties in the continuum limit

is given by the so-called overlap1 Dirac operator [48]. The index theorem for the overlap

Dirac operator is studied numerically in refs. [46, 49]. The successful results obtained

in these tests may be understood from the analytical work [50] (See also ref. [51] for an

extension.), in which the usual expression for the topological charge in the continuum has

been derived from the index of the overlap Dirac operator nonperturbatively. As emphasized

1Historically, the overlap formalism [46], from which one can actually derive the overlap Dirac opera-

tor [48], has been established before the rediscovery of the Ginsparg-Wilson relation.
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in refs. [50], the derivation of the correct axial anomaly [52], which uses the perturbative

expansion with respect to the gauge field, is not sufficient for demonstrating the index

theorem for topologically nontrivial gauge configurations.

In the past several years, the ideas developed in lattice gauge theory have been suc-

cessfully extended to NC geometry. In the case of NC torus, the overlap Dirac operator

has been introduced in ref. [53], and it was used to define a NC chiral gauge theory with

manifest star-gauge invariance. For general NC manifolds, a prescription to define the

Ginsparg-Wilson Dirac operator and its index has been provided in ref. [54], and the fuzzy

sphere was considered as a concrete example.2 The Ginsparg-Wilson algebra for the fuzzy

sphere has been studied in detail in each topological sector [33]. In ref. [56] the overlap

Dirac operator on the NC torus [53] was derived also from this general prescription [54],

and the axial anomaly has been calculated in the continuum limit.

In an attempt to construct a topologically nontrivial configuration on the fuzzy sphere,

an analogue of the ’t Hooft-Polyakov monopole was obtained [33, 34]. Although the index

defined through the Ginsparg-Wilson Dirac operator vanishes for these configurations, one

can make it non-zero by inserting a projection operator, which picks up the unbroken U(1)

component of the SU(2) gauge group. In fact the ’t Hooft-Polyakov monopole configura-

tions are precisely the meta-stable states observed in Monte Carlo simulations [28] taking

the two coincident fuzzy spheres as the initial configuration, which eventually decays into

a single fuzzy sphere. In ref. [57] this instability was studied analytically by the one-loop

calculation of free energy around the ’t Hooft-Polyakov monopole configurations, and it

was interpreted as the dynamical generation of a nontrivial index, which may be used for

the realization of a chiral fermion in our space-time.

The primary aim of the present work is to investigate the properties of the index

in finite NC geometry, taking the 2d U(1) gauge theory on a discretized NC torus as a

simple example, which is studied extensively in the literature both numerically [18] and

analytically [58 – 60]. In particular, ref. [60] presents general classical solutions carrying

the topological charge. We compute the index defined through the overlap Dirac operator

for these classical solutions. The topological charge defined naively on the discretized NC

torus is not an integer in general, although the index is. We observe, however, that when

the action is small, the topological charge is close to an integer, and it agrees with the

index as suggested by the index theorem. In fact, under the same condition, the index

turns out to be a multiple of N , the linear size of the 2d lattice. By interpolating the

classical solutions, we construct explicit configurations3 for which the index is of order 1,

but the action becomes of order N . Our results suggest that the probability of obtaining

a non-zero index vanishes in the continuum limit, which is consistent with the instanton

calculus in the continuum theory [59].

The rest of this paper is organized as follows. In section 2 we provide some generalities

concerning a matrix model formulation of gauge theories on a discretized NC torus and

define the index of the overlap Dirac operator. In section 3 we focus on the two-dimensional

2The Ginsparg-Wilson Dirac operator for vanishing gauge field was constructed earlier in refs. [55].
3While we were preparing this article, we received a preprint [61], in which a gauge configuration with

non-zero index was found numerically in the same model at small N .
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case, and discuss the classical solutions and the topological charge. In section 4 we examine

whether the index theorem holds for the classical solutions. In section 5 we construct

explicit configurations with the index of order 1 by interpolating the classical solutions,

and study their properties. In section 6 we review some known results in the commutative

case, and discuss their relationship to our results. Section 7 is devoted to a summary and

discussions.

2. Generalities

2.1 Gauge theory on a discretized NC torus

The U(1) gauge theory on a NC space is given by the action

Scont =
1

g2

∫

ddx
1

4

(

Fµν(x) ? Fµν(x)
)

, (2.1)

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i {Aµ(x) ? Aν(x) − Aν(x) ? Aµ(x)} , (2.2)

where the star-product is defined by

ϕ1(x) ? ϕ2(x) = exp

(

i

2
Θµν

∂

∂xµ

∂

∂yµ

)

ϕ1(x)ϕ2(y)

∣

∣

∣

∣

x=y

. (2.3)

Note that the star-product is associative but non-commutative. This non-commutativity

may be attributed to that of space-time since

xµ ? xν − xν ? xµ = iΘµν . (2.4)

The action (2.1) is invariant under a star-gauge transformation

Aµ(x) 7→ g(x) ? Aµ(x) ? g∗(x) − ig(x) ? ∂µg∗(x) , (2.5)

where g(x) obeys the star-unitarity condition

g(x) ? g(x)∗ = g(x)∗ ? g(x) = 1 (2.6)

instead of |g(x)| = 1.

When we discretize the space, the consistency with the NC algebra inevitably requires

the space to be compactified in a specific way [8]. Thus we obtain a theory on a periodic

Ld lattice with the action

Slat = −β
∑

x

∑

µ6=ν

Uµ(x) ? Uν(x + aµ̂) ? Uµ(x + aν̂)∗ ? Uν(x)∗ , (2.7)

where the link variables Uµ(x) are star-unitary; i.e.,

Uµ(x) ? Uµ(x)∗ = Uµ(x)∗ ? Uµ(x) = 1 . (2.8)

We use the standard notation in lattice gauge theory, where µ̂ represents a unit vector in

the µ direction, and a represents the lattice spacing. The star-product on the lattice can
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be obtained by rewriting (2.3) in terms of Fourier modes and restricting the momentum to

be the one allowed on the lattice. As in the commutative space, one obtains the continuum

action (2.1) from (2.7) in the a → 0 limit with the identification β = 1
2a2g2 and

Uµ(x) = P exp?

(

i

∫ x+aµ̂

x
dzAµ(z)

)

. (2.9)

2.2 The overlap Dirac operator and its index

In this section we define the overlap Dirac operator and its index for a gauge configuration

on the discretized NC torus [53, 54, 56]. All the formulae have the same form as in the

usual lattice gauge theory except for the use of the star product.

We consider a Dirac operator D satisfying the Ginsparg-Wilson relation [43]

γ5D + Dγ5 = aDγ5D . (2.10)

Assuming the γ5-hermiticity D† = γ5Dγ5, we can define a hermitian operator γ̂5 by

γ̂5 = γ5 (1 − aD) , (2.11)

which may be solved for D as D = 1
a(1− γ5γ̂5). Then the Ginsparg-Wilson relation (2.10)

is equivalent to requiring γ̂5 to be unitary. The overlap Dirac operator corresponds to

taking γ̂5 to be [48]

γ̂5 =
H√
H2

, (2.12)

H = γ5 (1 − aDW) , (2.13)

where DW is the Wilson-Dirac operator

DW =
1

2

d
∑

µ=1

{

γµ

(

∇∗
µ + ∇µ

)

− a∇∗
µ∇µ

}

(2.14)

with ∇µ (∇∗
µ) being the covariant forward (backward) difference operator defined by

∇µΨ(x) =
1

a
[Uµ(x) ? Ψ(x + aµ̂) − Ψ(x)] , (2.15)

∇∗
µΨ(x) =

1

a

[

Ψ(x) − Uµ(x − aµ̂)† ? Ψ(x − aµ̂)
]

. (2.16)

Since the Ginsparg-Wilson relation (2.10) can be rewritten as

γ5D + Dγ̂5 = 0 , (2.17)

the lattice action

S = ad
∑

x

Ψ̄(x) ? DΨ(x) (2.18)

has the exact lattice chiral symmetry [44, 45]

Ψ(x) 7→ eiαγ̂5 Ψ(x) , Ψ̄(x) 7→ Ψ̄(x) eiαγ5 . (2.19)
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Note also that the space of zero modes of the Dirac operator D is invariant under γ5, which

means that one can define the index of D unambiguously by ν ≡ n+ −n−, where n± is the

number of zero modes with the chirality ±1. It turns out that [46, 47, 44]

ν =
1

2
T r(γ5 + γ̂5) =

1

2
T r

H√
H2

, (2.20)

where T r represents a trace over the space of the Dirac spinor field on the lattice.

2.3 Matrix formulation

So far we have been using a formulation of NC geometry, in which the non-commutativity

of the space-time is encoded in the star-product. In fact it is much more convenient for our

purpose to use an equivalent formulation [62], in which one maps functions on a NC space to

operators so that the star-product becomes nothing but the usual operator product, which

is non-commutative. In particular, the coordinate operators x̂µ satisfy the commutation

relation [x̂µ, x̂ν ] = iΘµν . In the discrete version, one maps a field ϕ(x) on the Ld lattice

onto a N × N matrix Φ, where N2 = Ld in order to match the degrees of freedom. This

map yields the following correspondence

ϕ1(x) ? ϕ2(x) ⇔ Φ1Φ2 , (2.21)

ϕ(x + aµ̂) ⇔ ΓµΦΓ†
µ , (2.22)

1

Ld

∑

x

ϕ(x) ⇔ 1

N
tr Φ . (2.23)

The SU(N) matrices Γµ (µ = 1, · · · , d) represent a shift on the matrix side, and they satisfy

the ’t Hooft-Weyl algebra

ΓµΓν = ZµνΓνΓµ , (2.24)

where Zµν = Z∗
νµ is a phase factor. An explicit representation of Γµ in the d = 2 case shall

be given in section 3.1.

Using the map, one can reformulate the lattice theory (2.7) in terms of matrices. The

star-unitarity condition (2.8) on the link variables Uµ(x) simply implies that the corre-

sponding matrix Ûµ should be unitary. The action (2.7) can be written as

S = −Nβ
∑

µ6=ν

tr
{

Ûµ (ΓµÛνΓ
†
µ) (Γν Û †

µΓ†
ν) Û †

ν

}

+ 2βN2 (2.25)

= −Nβ
∑

µ6=ν

Zνµtr
(

Vµ Vν V †
µ V †

ν

)

+ 2βN2 , (2.26)

where Vµ ≡ ÛµΓµ is a U(N) matrix. This is nothing but the twisted Eguchi-Kawai (TEK)

model [17], which appeared in history as a matrix model equivalent to the large N gauge

theory [16]. In fact we have added the constant term 2βN2 to what we would obtain

from (2.7) in order to make the absolute minimum of the action zero. We use this convention

in the rest of this paper.

– 6 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
3

The index can be calculated using eq. (2.20), where H is defined by eq. (2.13). The

only thing to note in transcription into matrices is that the covariant forward and back-

ward difference operators ∇µ and ∇∗
µ, which appear in the definition of the Wilson-Dirac

operator (2.14), should now be defined as

∇µΨ =
1

a

[

Ûµ(ΓµΨΓ†
µ) − Ψ

]

=
1

a

[

VµΨΓ†
µ − Ψ

]

, (2.27)

∇∗
µΨ =

1

a

[

Ψ − (Γ†
µÛ †

µΓµ)(Γ†
µΨΓµ)

]

=
1

a

[

Ψ − V †
µ ΨΓµ

]

. (2.28)

The index is simply given by half the difference between the numbers of positive and

negative eigenvalues of the hermitian matrix H. In this calculation we may simply set

a = 1, since the lattice spacing a appearing in the definition of the index actually cancels

out as it should. The computational effort for calculating the index is of order N6, since

we have to diagonalize the 2N2 × 2N2 hermitian matrix H.

3. Two-dimensional case

In this section we focus on the two-dimensional case, and discuss the classical solutions

and the topological charge.

3.1 Explicit representation

An explicit form of the map between fields and matrices in the two-dimensional case is

given, for instance, in ref. [53], where the twist in eq. (2.24) is given by

Z12 = exp

(

2πi
M

N

)

, M =
N + 1

2
(3.1)

with N being an odd integer. The algebra (2.24) can be realized by

Γ1 = PN , Γ2 = (QN )M , (3.2)

where we have defined the SU(n) matrices

Pn =



















0 1 0

0 1
. . .

. . .

. . . 1

1 0



















, Qn =

















1

e2πi/n

e4πi/n

. . .

e2πi(n−1)/n

















(3.3)

obeying PnQn = e2πi/n QnPn for later convenience. For this particular construction, which

we are going to use throughout this paper, it turns out that the NC tensor, which appears

in the star-product, is given by

Θµν = ϑ εµν , (3.4)

ϑ =
1

π
Na2 . (3.5)

Note that the linear size of the torus ` = Na goes to ∞ in the continuum limit a → 0

fixing ϑ. A finite torus can be obtained by other constructions given in the first paper of

refs. [8] and ref. [60], which are mutually equivalent.
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3.2 Definition of the topological charge

Let us define the topological charge for a gauge configuration on the discretized 2d torus.

In the language of fields, we define the topological charge as

Q =
1

4πi

∑

x

∑

µν

εµνUµ(x) ? Uν(x + aµ̂) ? Uµ(x + aν̂)∗ ? Uν(x)∗ , (3.6)

which is obtained as a naive discretization of the topological charge in 2d gauge theory

defined in the continuum as

Q =
1

4π

∫

d2x εµνFµν . (3.7)

By using the map between fields and matrices, the topological charge (3.6) can be

represented in terms of matrices as

Q =
1

4πi
N

∑

µν

εµνtr
{

Ûµ (ΓµÛνΓ
†
µ) (ΓνÛ

†
µΓ†

ν) Û †
ν

)

(3.8)

=
1

4πi
N

∑

µν

εµνZνµtr
(

Vµ Vν V †
µ V †

ν

)

. (3.9)

3.3 Classical solutions

The classical equation of motion can be obtained from the action (2.26) as

V †
µ (W − W †)Vµ = W − W † , (3.10)

where the unitary matrix W is defined by

W = ZνµVµ Vν V †
µ V †

ν . (3.11)

The general solutions4 to this equation can be brought into a block-diagonal form [60]

Vµ =













Γ
(1)
µ

Γ
(2)
µ

. . .

Γ
(k)
µ













(3.12)

by an appropriate SU(N) transformation, where Γ
(j)
µ are nj×nj unitary matrices satisfying

the ’t Hooft-Weyl algebra

Γ(j)
µ Γ(j)

ν = Z(j)
µν Γ(j)

ν Γ(j)
µ , (3.13)

Z
(j)
12 = Z

(j)∗
21 = exp

(

2πi
mj

nj

)

. (3.14)

An explicit representation [63] is given, for instance, by

Γ
(j)
1 = Pnj

, Γ
(j)
2 = (Qnj

)mj . (3.15)

4In fact there is another type of solutions, which we do not consider in this paper since they do not have

finite action in the continuum limit [60].

– 8 –



J
H
E
P
0
2
(
2
0
0
7
)
0
3
3

-100

-75

-50

-25

0

25

50

75

100

0 100 200 300 400 500 600

Q

S/β

-300

-225

-150

-75

0

75

150

225

300

0 100 200 300 400 500 600

Q

S/β

Figure 1: A scatter plot of the action S/β (x-axis) and the topological charge Q (y-axis) for

classical solutions at N = 25 (left) and N = 75 (right). The closed circles represent the solutions

for k = 1, which gives (4.1).

For each solution, the action and the topological charge can be easily evaluated as

S = 4Nβ
∑

j

nj sin2

{

π

(

mj

nj
− M

N

)}

, (3.16)

Q =
N

2π

∑

j

nj sin

{

2π

(

mj

nj
− M

N

)}

. (3.17)

Note that the topological charge Q is not an integer in general. If we require the action to

be less than of order N , however, the argument of the sine has to vanish in the large N

limit for all j . In that case the topological charge approaches an integer

Q ' N





∑

j

mj − M



 , (3.18)

which is actually a multiple of N .

4. The index theorem for the classical solutions

The index theorem [64] relates the topological charge of an arbitrary gauge configuration

to the index of the Dirac operator on that background. A proof of the index theorem

in noncommutative R
d is given in ref. [65].5 However, as in the commutative case, the

formulation of the index theorem becomes nontrivial in the discretized setup. Here we

address this issue for the classical solutions reviewed in the previous section.

Let us first look at the spectrum of the topological charge for the classical solutions.

In figure 1 we present a scatter plot of the action S/β (x-axis) and the topological charge

Q (y-axis) for the classical solutions at N = 25 (left) and N = 75 (right). We plot all the

5In ref. [65] an explicit ADHM construction of the fermionic zero modes in the multi-instanton back-

grounds was also performed, and the number of zero modes agreed with the index theorem. See also ref. [66]

for a related work.
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Figure 2: A scatter plot of the topological charge Q (x-axis) and the index ν (y-axis) for solutions

at N = 25 with the action in the range S/β ≤ 100 (top left), 100 ≤ S/β ≤ 200 (top right)

200 ≤ S/β ≤ 300 (bottom left) and 300 ≤ S/β ≤ 600 (bottom right).

solutions in the displayed range without any restrictions.6 We observe the accumulation of

solutions with the topological charge close to a multiple integer of N . The region of action,

for which we obtain only solutions with the topological charge close to a multiple integer

of N , extends with N . This agrees with the argument that led to (3.18) in the previous

section.

The minimum action in each topological sector is achieved by the k = 1 case, for which

eqs. (3.16) and (3.17) lead to

S ' 4π2β

(

Q

N

)2

(4.1)

at large N . Note, however, that there are many solutions with k > 1 which have an action

very close to (4.1). For solutions with larger action, on the other hand, the topological

charge takes quite arbitrary values as expected.

We also observe the accumulation of solutions with the topological charge close to half-

integer multiples of N . The minimum action achieved by such solutions increases linearly

with N . These are the solutions having one 1 × 1 block Γ
(1)
µ = 1 with n1 = 1 and m1 = 0.

6For N = 75 this calculation was quite time-consuming because there are so many classical solutions.

However, the figure looks almost the same even if we restrict the number of blocks k in eq. (3.12) to be e.g.,

k ≤ 10.
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By choosing the mj (j ≥ 2) so that the arguments of the sine for the other blocks vanish

in the large N limit, the topological charge (3.17) becomes

Q ' N





∑

j

mj − M



 + M +
1

2
, (4.2)

which coincides with the observed spectrum noting that M = N+1
2 . The action (3.16) is

given by S/β ' 4N , which nicely explains our observation from figure 1.

Next let us calculate the index of the overlap Dirac operator for the classical solutions,

and examine whether it agrees with the topological charge. In figure 2 we present a scatter

plot of the topological charge Q (x-axis) and the index ν (y-axis) for solutions at N = 25

restricting the action in four different regions. We plot all the solutions in the displayed

range without any restrictions. For S/β ≤ 100, the index is either ν = 0 or ν = ±N , and

the topological charge turns out to be quite close to ν, which nicely confirms the index

theorem. For solutions with larger action, we observe the case with ν close to half-integer

multiples of N in accord with (4.2). While the index theorem is violated to some extent,

there still exists a strong correlation between Q and ν. It is interesting that the smearing

of the pattern occurs mainly in the direction of Q. In this regard let us recall that the

definition (3.6) of Q we have used is just a naive descritized version of the continuum

formula. In order to recover an exact index theorem in the discretized setting, one may

have to use a more sophisticated definition as in the commutative case [47]. Whether this

is possible or not is an interesting open question.

5. Configurations with the index of order 1

In the previous section we observed that the topological charge (3.17) and the index take

only multiple integers of N for classical solutions with small action. This is in striking

contrast to the corresponding commutative theory, where they take arbitrary integers, as

we will discuss in section 6. In order to clarify the situation, let us construct configurations

with the index of order 1 by interpolating the classical solutions in different topological

sectors. This can be achieved by replacing the integer parameters mj in the explicit form

of the classical solutions (3.15) by real parameters. As the simplest case, we consider the

solutions (3.12) with k = 1, and generalize them to a one-parameter family of configurations

as

V1 =



















0 1 0

0 1
. . .

. . .

. . . 1

1 0



















, V2 =

















1

e2πiµ/N

e4πiµ/N

. . .

e2πi(N−1)µ/N

















, (5.1)

where µ is a real parameter. Since µ = M gives the absolute minimum of the action, it is

convenient to define x
def
= µ−M . As a function of x, the action and the topological charge
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Figure 3: (Left) The action (5.2) is plotted as a function of x for N = 35. (Right) The topological

charge Q in (5.3) and the index ν of the overlap Dirac operator are plotted as a function of x for

N = 35.

can be evaluated as

S(x) = 4Nβ

[

(N − 1) sin2 πx

N
+ sin2

{

π

(

−1 +
1

N

)

x

}]

, (5.2)

Q(x) =
N

2π

[

(N − 1) sin
2πx

N
+ sin

{

2π

(

−1 +
1

N

)

x

}]

. (5.3)

In figure 3 (left) we plot the action S(x) against x for N = 35. Let n be the integer

which is closest to x, and consider the case where |x − n| ∼ O(N−p) with p ≥ 0. Then, at

large N , the leading contribution is given by

S(x)/β '
{

4π2n2 ∼ O(1) for p > 1
2

4N sin2(πx) ∼ O(N1−2p) for 0 ≤ p < 1
2 .

(5.4)

In figure 3 (right) we plot the index ν of the overlap Dirac operator and the topological

charge Q(x) against x for N = 35. As we increase x from 0 to 1, the index ν takes various

integer values between 0 and N . In this way we are able to construct explicit configurations

with ν of order 1. We have also studied N = 15, 25, and find that the result of the index

ν is quite stable. For instance, the region of x which gives ν = 0 is |x| < 0.36 for N = 15,

and |x| < 0.34 for N = 25, 35. This implies, in view of (5.4), that the configurations with

the index of order 1 constructed above has an action of order N .

We also observe in figure 3 (right) that the topological charge does not agree with

the index for arbitrary x. When x is small, we obtain Q ∼ 2
3Nπ2x3. Therefore, in order

to obtain Q of order 1, we need to have x ∼ O(N−1/3), for which the action becomes of

order N1/3 due to eq. (5.4). However, for such a small x, the index is zero in the large

N limit according to our discussion in the previous paragraph. This shows that the index

theorem is violated even in the large N limit if the action is as large as O(N1/3).7 It is of

course possible that the upper bound on S/β for which the index theorem holds in general

7We note that the admissibility condition derived in ref. [61] allows configurations with an action of

O(N2).
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is actually less than O(N1/3), say O(1). In fact Q and ν agree when x is close to a half

integer, for which S/β becomes of order N . We consider this as accidental, however, given

the discrepancies observed for configurations with smaller action.

Incidentally, we note that the configurations at x ∼ n + 1
2 (n ∈ Z), which gives the

local maxima of the action S(x), are closely related to the classical solutions with the

topological charge close to half-integer multiples of N discussed in the previous section.

Indeed, for the two types of configurations, the topological charge as well as the action

coincides8 at large N . In view of this, it is very likely that the classical solutions with the

topological charge close to half-integer multiples of N actually correspond to saddle-point

configurations, instead of being local minima of the action. These solutions are reminiscent

of the sphaleron configurations [72].

6. Relationship to the commutative case

In this section we review some known results in the commutative case and discuss their

relationship to our results. The commutative counterpart of our theory can be obtained

from (2.7) by replacing the star-product with the ordinary product. The classical solutions

are given by configurations with a uniform field strength. Explicitly, such a configuration

can be constructed as

U1(x) =

{

1 if x1 6= a(N − 1)

exp(−2πix2Q̃/aN) if x1 = a(N − 1) ,

U2(x) = exp(2πix1Q̃/aN2) , (6.1)

where Q̃ is an integer, which corresponds to the topological charge.9 In fact one may obtain

other solutions by Uµ(x) → e2πihµ/NUµ(x). Since configurations obtained in this way with

hµ differing by integers are related with each other by a large gauge transformation, the

gauge inequivalent solutions are obtained by restricting hµ within the range −1
2 ≤ hµ < 1

2 .

Up to this degeneracy, which corresponds to the moduli space, there is essentially one

classical solution in each topological sector labeled by an integer Q̃.

For x1 = a(N − 1), U1(x) goes around the unit circle in the complex plane Q̃ times

when x2 goes from 0 to a(N − 1). This implies that the configuration is singular10 in the

continuum limit with finite Q̃ since U1(x) = 1 for x1 6= a(N − 1). (Note, however, that the

configuration is physically smooth since the field strength is constant.) This singularity

disappears if and only if Q̃ is a multiple integer of N . In that case, the configuration itself

8Note, however, that they are not exactly equivalent configurations, since the eigenvalue spectrum of Vµ

is different, and the former type of configuration is actually not a classical solution.
9A definition of the topological charge in the commutative case can be obtained from (3.6) by simply

replacing the star-product by the ordinary product. This definition gives a non-integer value at finite lattice

spacing, and approaches the correct integer value Q̃ only in the continuum limit. However, there is a simple

geometric construction of the topological charge, which gives an integer value even at finite lattice spacing.

This definition is used, for instance, in ref. [67].
10Note also that U2(x) ∼ exp(2πiQ̃/N) for x1 = a(N − 1), while U2(x) = 1 for x1 = 0. Therefore, U2(x)

becomes singular when 0 < Q̃

N
< 1 in the continuum limit. This singularity disappears, however, when Q̃

is kept finite in the continuum limit or when Q̃ is a multiple integer of N .
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becomes totally smooth, and moreover it becomes translationally invariant in the direction

2. For such configurations, the star-product reduces to the ordinary product due to the

definition (2.3). Therefore, the configurations satisfy the star-unitarity condition (2.8),

which implies that they can be thought of as configurations on the discretized 2d NC

torus. In fact one can easily show that they correspond to the classical solutions (3.12)

given by a single block (k = 1).11 Note, however, that there are many other classical

solutions with larger action in each topological sector on the discretized 2d NC torus.

In the commutative case, the probability distribution of the topological sectors, which

are labeled by the index ν, can be calculated exactly in the continuum,12 and it turns out

to be P (ν) ∝ e−S(ν), where S(ν) is the minimum action in the topological sector ν. In

terms of the lattice parameters, S(ν) may be written as13

S(ν) =
4π2β

N2
ν2 (6.2)

at large N and β. Since β ∝ 1
a2 in the continuum limit, the distribution scales as a function

of ν/`, where ` = Na is the physical extent of the space. Note that the probability for

obtaining ν . O(`) remains finite.

In the NC case, the classical solutions with the action which is less than of order N

exist only in the topological sectors labeled by ν which is a multiple of N . The minimum

action (4.1) for classical solutions in these topological sectors agrees with (6.2) for the

reason explained above. In the continuum limit, however, one has to take the a → 0

limit in such a way that ϑ given by (3.5) is fixed. Since β should be sent to infinity as

β ∝ 1
a2 ∝ N , which follows from the scaling behavior of the correlation functions [18], we

obtain finite action only for ν = 0. This suggests that the probability of obtaining non-zero

ν vanishes in the continuum limit, which is consistent with the instanton calculus in the

continuum theory [59]. There the partition function has been written as a sum over all the

instanton configurations with the total topological charge constrained to be equal to the

magnetic flux, which is zero in the present case.

7. Summary and discussions

In this paper we have studied the index of the overlap Dirac operator in finite NC geometry,

and clarified its basic properties including the index theorem. Our results confirm that the

overlap Dirac operator indeed captures the topological nature of gauge theory in finite NC

geometry, as in commutative lattice gauge theories. An analytic proof of the index theorem

extending the works [50] in the commutative case would be an interesting future direction.

In fact we have observed a remarkable impact of NC geometry on the topological

properties of the theory. As is well known, we encounter novel topological objects, which

are represented by infinitely many classical solutions in each topological sector. However,

11These configurations have been studied earlier in refs. [68, 69] in the context of gauge theory in com-

mutative space-time.
12We thank Hidenori Fukaya for clarification on this point.
13For studies of the probability distribution P (ν) on the lattice, see refs. [67, 70].
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we also observe the opposite effects. The classical solutions with an action less than of

order N should have an index ν which is a multiple integer of N . While we were able to

construct configurations with the index ν of order 1 explicitly by interpolating the classical

solutions, they have an action of order N . The classical solutions with ν = ±N,±2N, · · ·
have an action of order 1, but since it is strictly positive and proportional to β, the action

becomes infinite when one takes the β → ∞ limit. Thus we are left with the ν = 0 sector

in the continuum limit.14 Confirmation of this statement in the full quantum theory based

on Monte Carlo simulation is reported in a separate paper [73].

The model we studied is the U(1) gauge theory on a discretized 2d NC torus, whose

commutative counterpart has been studied extensively in the literature for the reason that it

shares many dynamical properties with 4d non-abelian gauge theories. The conclusion that

the path integral is dominated by the topologically trivial sector implies that the θ-term15

is irrelevant unlike in the commutative case [71]. It would be interesting to investigate

whether the suppression of non-zero indices is a general feature of gauge theories on NC

geometry, which is independent of the space-time dimensionality, the gauge group, the

matter content and so on. If the same property holds for the NC version of the standard

model, it suggests an exciting possibility that the strong CP problem is naturally solved

due to the effects of NC geometry.

Note, however, that 4d gauge theories in NC geometry has problems of its own. Unlike

the 2d case studied here, the perturbative vacuum in the 4d case actually has tachyonic

instability due to the UV/IR mixing [74 – 79]. The system stabilizes by “tachyon conden-

sation”, and finds a stable nonperturbative vacuum [19], in which the Wilson line corre-

sponding to the tachyonic mode acquires a vacuum expectation value. Alternatively, one

can stabilize the perturbative vacuum by introducing an appropriate UV cutoff. Although

we do not know precisely how we should construct a realistic model at this moment, it is

tempting to speculate that the strong CP problem may somehow be related to the physics

of string theory origin.
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